АВТОНОВОСТИ

Ученые научили компьютер распознавать пешеходов

16.02.2016

Могут ли компьютеры распознавать объекты также, как человеческий мозг? Этим озадачились исследователи из университета Сан-Диего и разработали «умный» алгоритм, способный распознавать людей, в частности, пешеходов.

513836e594a6567c8800001f

Технология работает намного быстрее и точнее, чем существующие ныне системы, используемые сегодня большинством автопроизводителей. Она может определить людей со скоростью 2-4 кадра в секунду, делая половину ошибок по сравнению с существующими системами, и может быть использована в «умных» автомобилях, робототехнике и в поисковых системах, проводящих поиск по изображению или видео.

pedestrian-detection-ucsd

Алгоритм требует гораздо меньше вычислительной мощности, так как сосредоточен лишь на нескольких областях изображения.

«Мы стремимся создать системы компьютерного зрения, которые помогут компьютерам лучше понять мир вокруг них», – сказал Нуну Васконселос, профессор электротехники из UC San Diego Jacobs School of Engineering.

pedestrian-detection-large

Обычные системы исследуют изображение в маленьких окнах, которые обрабатываются классификатором. Этот подход является сложной задачей, так как люди на изображении получаются различного размера (в зависимости от расстояния до них) и в различных частях кадра. Как правило, нужно проверить миллионы частей видеокадра со скоростью от 5 до 30 кадров в секунду.

1321273443

В каскадном обнаружении детектор работает в несколько этапов. Сперва алгоритм идентифицирует и отбрасывает изображения не имеющие человека (к примеру, небо). Затем обрабатываются изображения, которые труднее идентифицировать, к примеру, содержащие дерево, которое компьютер может распознать по форме, цвету, контурам и т.д. На заключительном этапе алгоритм должен отличить людей/пешеходов от других похожих объектов. Хотя этот метод является относительно быстрым, он не достаточно надежен, когда достигает финальной стадии.

nvidia_13

Чтобы решить эту проблему, Васконселос и его команда разработал новый алгоритм, который включает глубинное обучение и моделирование на заключительных этапах каскадного детектора. Глубинные модели лучше подходят для комплексного распознавания образов и могут сопоставить сотни и тысячи примеров изображений, которые имеют или не имеют человека. Но, в то время, как эта технология хорошо работает на конечных стадиях, она слишком сложна для использования ее на ранних стадиях. Поэтому в решении исследователей сперва используются простые классификаторы, а затем сложные — глубинное обучение и моделирование.

Алгоритм работает пока только для бинарных задач обнаружения, таких, как обнаружение пешеходов. Но исследователи стремятся расширить технологию каскадного обнаружения многих объектов одновременно.

Система Orphus

Если вы заметили ошибку на сайте, выделите необходимый текст мышью и нажмите Ctrl+Enter

Популярные

Статьи о нас

Больше статей

Цены на бензин

Источники vseazs.com

Онлайн пробки

"Пробки".